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MINI UAX.. PROCCDTRES FOR Tr',O-VALIUEr) DEC,•l: N
PROBLEMS 171,31,1 THE SIZE O SA.-'PTJE IS FIXED*

by

S. G. Allen, Jr.

1. The Minimax Solution for the Case of a Simple Dichotomy.

The problem to be considered is a statistical decision procedure for

choosing between two alternative actions, A1 and A2 , after taking

n independent observations on a random variable x. The probability

density p(x,Q) of x is known except for the value of a real para-

meter 9 which is assumed to be one-dimensional.!/ The parameter

spacefrLis partitioned into two subspacesJfl and .1 2 such that

decision A1 is preferred if @-aI and A2 preferred if 11 The

costs of decisions A1 and A2 a•-e, respectively,

1.1 WI(G) 0 0 GsfE -1
O, 0, Qc2

and

1.2 w2 (9) 11, GEA I
~O,9EA "

The motivating idea for Theorem A of this report is to be found
in a lot acceptance sampling procedure proposed in an unpublished
paper by Mr. Norman Rudy of Sacramento State College. Discussion
with members of the Department of Statistics, Stanford University,
in particular with Professor H. A. Girshickwas most beneficial
in the formulation of the present draft ofI the reoort.

I/The main results of this paper will be based on the assumption
that the probability distribution of x is continuous. The necessary
modification of the results for the case of discrete probabilitv
distributions will be discussed in a concliiding section of the
paper.
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If the parameter space consists of a simple dichotomy

(i.e. A consists of the sinle noint @I, and X12, the single

point Q@)g the minimax procedure is well known. The relevant

statistic is the likelihood ratio

-. n

* - ,, T- fp(;XiPQ2-}_: . ..

TP(Xiro1 )

and the decision procedure which minimizes the maximum expected

cost is to

1.4 choose Al, if A c and

1.5 choose A2 , if X c,

where the criterion c satisfies the relation

1.6 wi(0 2 ) Pr(a;LcI 2 ): w2 (0 1 ) Pr(A>clol)

This value of c is

ws(Qi)S
1.7 C:

w 1 (o 2 )(1-g)

where g is the least favorable a priori pr'obability that Q Ole

2. The Minimax Solution to a More General Problem. The

assumption that-A1 andA 2 each consists of a single point is often

a very artificial one. A more general formulation of the two-valued,

decision problem is the following: .fl is an interval, @Otal if

and 0o where the costs of decisions A1 and A2
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are given by 1.1, 1.2, and

2.1 wl(9o) t V2(0o) = 0.

This statement of the Problem avoids the often unrealistic postulate

of an "indifference interval", i.e. an interval such that decisions

A and A are either costless or equally costly if 9 assumes a
1 A2

value in this interval. Nowever, in this more general formulation,

is the likelihood ratio te3t for some @i•11 and 02 a S-2 still a

" mininsax decision procedure?.

The ollowing ;-"the answer..

Theorem A. Let ".

2.2 Rl(c,,OQ,1 9 G) = w1 () IrLk(Ol,02): el.0J and

2.3 R2 (c,9 1 9 0 2 ,Q) = w2 (O) PrEA( 1 ,@2 )> elQj, where

Ole Aand 92 "J,2 0 Then the likelihood ratio test is a minimax
procedure if and only if there exists a triple (coO!,Q2) such that

Suppose the likelihood ratio test for some

and c -c is minimax. Then 2.4 follows°

I1t seems only reasonable to assume that tnf wl(Q) = w1 (o) and
9an2

and w2 (c) = w2 (@o). With this in views there is no loss in

generality in requiring 2.1.



Proof of suff Iciency:

Let Fo denote the lielcolihood ratio test proce'dure associated

with the triple (co,@l,@2) satisfying 2.4. Then the expected cost

of this procedure is given by

2.5 R(FoG) - Wl(Q) p0LNO0,@)Ko Soo dG(Q)

J2

$ JV 2 (Q) Pr~f, oo)>c1,0d>G()

where dG(Q) denotes any a priori probability measure over!l. Since

oo,0) and R2 (c2X0 ),, are the maxima of the Integrands

appearing in 2.5, it fbllows that

0 0oo.0 0 0
1! Co ,19,2 ) 1R( ,91,2,@i)

If G is a distribution concentrating all probability at 9 and 0

2.6 is a strict equality. Therefore

2.7 max R(FoG) t RiCc0,goSg1 ) 0

Let Go be the a priori distribution given by

2.8 g Pr(QO U )23.)

2.9 l-g P P(O = G0)

where g Satisfies
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w2 (9 O)g2.1I0 co I

Clearly Fo is the Bayes procedure against G.. Therefore

2.11 min R(FGo) = R(FoqGo) ,

F

where F is any decision procedure for choosing between A, and A2.

Since GO is a distribution for which 2.6 is a strict equallt7, the

minitmx property of F. follows.

3. Assumptions Under Which the Likelihood Ratio Test is a

Minimax Procedure. It is now of intorest to examine a class

of distribution functions and a class of cost functions for

which condition 2.4 of Theorem A is aatisflJid.

Consider a family of probability rjeasurcs dcfIned by

3.1 dL0 (m)eOx 0 (x)

where -fo(x) is a measure defined over an interval X, and where

3.2 WOW) JO ex dfO(x)
-co

is a bounded function of 9 defined over an interval A ii- if u is

the sum of n independent random variables each distributed according

to 3.1, then u is distributed according to

2/ The properties of this family of distribution functions are given
an extensive discussion in Section 3 of Girshick and Savage, "Bayes
and Minimax Estimates for Quadratic Loss Functions". Tec!hnical
Report No. 5, Contract No. N6-ONR-251 Task III, Department of
Statistics, Stanford hnIversity, November 21, 1950e
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3.3 dL(u1i) ae dflu)

This is again the distribution family introduced in 3.1 and 3.2,

with '"(u) defined over an interval U.

In view of the form of the distributions 3.1 and 3.3, it is

simple to show that for every number c such that c (wihere A is

defined in 1.3) there exists a unique number k such that uk.

This correspondence permits the ninctions 2.2 and 2.3 to be

rewritten as

3.4 Rl(k,Q) = w 1(9) L(kjQ)

3.5 R2 (k,Q) = W2 (Q) Ll-L(k)9)3.

These functions have the following important property:

Leain 1.

If max R!(kce) and a R2 (k, ) exist, then they are., respectively,

monotonic increasing and decreasing functions of k.

Proof:

Let max Rl(k,Q) : w1 (9')L(kJO'), Qt'-aO2

and max RV(ko) : w2 (Q")[l-L(kIQ")J, Off&fl1

Obviously L(kjG) is an increasing function of k for any 9,

Thus for A positive

v1 (Q') L(ktQ') wl(Q ') L(k.Aj 1')4 max wl(Q) L(k-at 1).- max Rl~k+,,)
Q~n208'n2

and
v2(G")[l-L(a 10")l 4e ws(O") [1-Lk-.61")] ý max ee2(Q)[I-L(k-d.1")D

as desired.
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It is now possible to prDve the fbllowing

Theorem B. Let Y(u), wl(Q), and w2 (Q) be 'continuous throurhout

any finite Intervals in TT -4a,b),A 2 , andA 1 I, respectively.:4 Let

3.6 lir Rl(k,9) - lim R2 (k,G) u 0
k-a k-ob

uniformly in 9. Then if the max Rl(kG) and max R2 (kQ) exist

for some keU, there exists a unique value of kR U such that

3.7 max Rl(k,Q) = max R2 (k,@) .

Proof:

Suppose for some k = ko& U0U, max R (ko,,9)> max R2 (ko,Q)o Flor

k<ko, Rl(kQ) is unifbrmly bounded by max RI(kog)o Since RI(k,Q)
992

is continuous in k and 9, the max Rl(k,Q) exists and is continuous

for k(kC . Ccrtainly the sup R2 (k,Q) is continuous in k, and for

k<k, sup R2 (kg)'max R2 (koQ)_ Since by 3.6 max R2 (kQ)-PO as

k-ta, there must be some k£ (a~kO) such that max Rl(k,Q) = sup R2 (k,G) 5 ,

or, actually, max R1 (k,Q) = max R2 (k,Q). 'urthermore in view of

Leaina I there is only one such value of k. If on the other hand

mx R2 (k,Q) 7max R1(k,Q) for scme ko£U,, then, in like manner, the
Q8A1  @•G&A

restriction 3.6, Lemma 1, and the continuity hypothesis imply the

existence of a unique k r (kob) such that max R1 (kIcb) = max R2(kpg)
Te2 rmt nOl

4/The Interval. U me7 of course be the open interval (.co, co).
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Corollary 1. Let'j'(u), wl(G), and w2 ( ) be continuous and bounded

over U = (a,b),JA 2 , and.%l, resoectively.-/ Then there exists a

unique k6U such that max Rl(k,@) = max R2 (ko).
9 Lf2 gnI

Corollary 2. Let

"I.8 Wj(Q) = Oe0 S2 >0

3.9 W2 (g) = O(e >0

be continuous functions throughout any finite intervals InJI2

and Al, resDectively. Let Ir(u) be continuous, positive , and

less than ''(Vo) for any real u. Then there exists a unique kE U

such that max Rl(k,Q) = max R2 (kQ).

Proof :

For • >0,

(1) lir wl(g)L(kj@), lir e Q -0k e.u dru) constant
Q-Poo ->W f e9Lu OF(u)

-00

ke ((u)

slim eOD constant
0900 e QUdl~'u)

k+82+4

(S2+k)Q 9 f cfu)
e ROO WOO constant : 0, and

Gme J6 k + dr n)

a bA

Y--/(u) is of course always bounded.



(2) lm w ()[I__________e_____Y~u constant
9->-0 *-cooO J 0 u dru)

-00

:6 lim k'dfTu constant
Gi-0/ 1 eg d'Vu)

lirn G constant
gp. e f dY~u)

-00.

Since

(3) lrn wl(G)L(kJQ) li rnw 2 (Q)flm-L(kIQ)] W1(O 0 )r1(kjg0 )
9Q.Po Q*-.oo

:W2 (%o)C1-L(kIQO&J 0

for any k., the max R (k.9) and miax R 2(k,Q) exist for any kc.

The mincJ(G) and minc&(g) are positive constants. Therefore,,

Gl2  OCA1

for fl 2
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(4) wl(@)L(kJO)., e 2  [k OQu dflu). constant
-00

< (C2 *u) (O-Qo.l) 0 (S2+u)(0o-1) dru). constant

) ld cnste(u) - constant

eJe

Se f e dY'(u) -- constant,

and similarly, for QLA,

(5) w2 (Q)[l'L(kJQ)]J e f drqu) constant.

The inequalities (4) and (5) demonstrate that 3.6 of Theorem B

Is satisfied. The conclusion of Corollary 2 follows.

Theorem B serves orimarily as a criterion for determining

whether or not minimax likelihood ratio tests exist in particular

cases. The corollaries to Theorem B are interesting as applications

of this criterion in the analysis of certain classes of sampling

distributions and cost functions. Individual cases could of course

be subjected to a much more direct analysis.

4. Remarks on the Discrete Case. The generality of the

family of distributions introduced in 3.1 should not be overlooked:

it Incluees many of the most important distributtons encountered

in statistics, such as the normal, binomial, and Poisson distribu-

tions. Suniose the distribution under consideration in this class



is a discrete one, and surnose that'r(u) assumes jumps at each

value of a denumerable sequence in w• ich the val ues are placed

in order of Increasinr! mn!cnitude. Fbr example, in the binomial

distribution, u = 0,1,2,...,n. In reneral It v.wil not be Do3sible

to find a value of k In such a sequence so that max R1 (k,Q) : max R2 (k,Q)o

However, provided that all other conditions of Theorem B are

satisfied except for the continuity of Y(u), it will be pon.ible

to find a pair (koI, k:) such that

4.1 max R(k 0) 4 max R2 Cko• )

4.2 max Rl(k 0  (k) 1x R( 0 9)gVL 2 ofI1
QE!

where k1 is the next larger value in the sequence than ko. The
0

minimax procedure is then a convex linear mixture of two procec.ures

involving ko and ko, a mixture determined byh0

where O0 f 4l.
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